Fragmentation of valence electronic states of C₃HF₅ studied by photoelectron photoion coincidence (PEPICO) techniques

<u>Trung-Nguyen Tran</u>^{1*}, Hiroshi Iwayama², Toshio Hayashi¹, Ken-ichi Inoue¹, Takayoshi Tsutsumi¹, and Kenji Ishikawa¹ ¹Center for Low-temperature Plasma Science, Nagoya University, Japan ² UVSOR Synchrotron Facility, Japan

Abstract: C_3HF_5 is a promising, eco-friendly alternative to traditional perfluoro compound (PFC) gases for etching high-aspect-ratio dielectric stack (SiO₂/SiN) layers in advanced semiconductor manufacturing. This PEPICO study using synchrotron radiation provides valuable insights into fragmentation of valence electronic states of C_3HF_5 .

1. Introduction

The semiconductor industry faces significant challenges in etching high-aspect-ratio (HAR) structures for fabrication of 3D flash memory. Traditional reactive ion etching (RIE) processes struggle with issues on aspectratio-dependent etching and require precise control to maintain high-quality profiles [1]. Hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) gases are widely used in the HAR etching processes; despite their impact on global warming. To address these environmental concerns, the industry is exploring alternative gas chemistries and process techniques, including low-GWP fluorocarbons.

In this study, we have investigated dissociation of C_3HF_5 by the PEPICO technique using synchrotron radiation [2]. Identifying key dissociative fragments provided valuable insights for optimization of the etching results and minimization of their environmental impact.

2. Methods

 C_3HF_5 (KSG-14, KANTO DENKA KOGYO., LTD) was used [3]. The PEPICO experiments were conducted at the UVSOR facility in Japan, utilizing a 2.5 m off-plane Eagle-type monochromator to generate tunable vacuum ultraviolet (VUV) light in the energy range of 10-26 eV. C_3HF_5 gas was introduced into a high-vacuum chamber and irradiated with the VUV light. A time-of-flight mass spectrometer was employed to detect the resulting fragment ions. By analyzing the ion yield curves as a function of photon energy, appearance energies were determined, providing valuable insights into the dissociation pathways and energetics of C_3HF_5 molecules.

3. Results and Discussion

Figure 1 presents the ion yield of C_3HF_5 as a function of photon energy, spanning from 10 to 26 eV, normalized to the photon flux of the VUV light source. A breakdown diagram was constructed from the ion yield curves, illustrating the relative ion abundance as a function of photon energy resulting from the dissociative ionization of C_3HF_5 . Photoionization of C_3HF_5 yields predominantly $C_3HF_5^+$, $C_3F_5^+$, $C_3HF_4^+$, $C_2F_4^+$, $C_2F_3^+$, and CF_3^+ ions.

In the range of low photon energies 10.7-14.0 eV, $C_3HF_{5^+}$ ion dominates by photoionization of the parent molecule. $C_3F_{5^+}$ ion is produced by dissociative reactions $C_3HF_5 + hv \rightarrow C_3F_{5^+} + H$.

As the photon energy increases, fragmentation pathways become more diverse, with $C_3HF_{4^+}$, $C_3F_{4^+}$, and $C_2F_{3^+}$ ions gaining prominence by the formation of counter fragments,

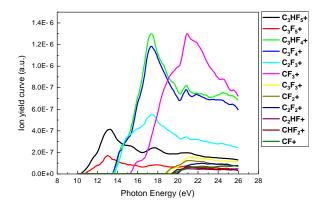


Fig. 1. Ion yield curves of the fragment ions produced from the photoionization of C_3HF_5 .

F, HF, and HF₂, respectively. In the range of high energies 19-26 eV, CF₃⁺ ion becomes increasingly abundant.

 C_3HF_5 provides a rich source of reactive species $C_xH_yF_z^+$ ions, with forms such as $C_3HF_5^+$ and $C_3HF_4^+$, effective stoichiometric balance between H and F for etching SiN layers, while $C_xF_y^+$ ions, with forms such as $C_3F_4^+$ and CF_3^+ , for etching SiO₂ layers in the HAR plasma etching.

4. Conclusion

The results obtained in this study provide valuable insights into the dissociation of C_3HF_5 and their potential role in etching of SiN and SiO₂ films. A deeper understanding of these fragmentations of HFCs can help optimization of selectivity control in plasma etching processes for improved HAR etching performance.

Acknowledgement

The authors would like to thank members of the Center for low-temperature plasma sciences of Nagoya University. This study was partly supported by JSPS-KAKENHI 21H01073, and conducted at BL3B of UVSOR Synchrotron Facility, Institute for Molecular Science (IMS program 23IMS6015. The authors are grateful to KANTO DENKA KOGYO CO., LTD for collaboration in this work.

References

- [1] S. N. Hsiao, et al., Appl. Surf. Sci. 542 (2021) 148439.
- [2] T. N. Tran, et al., Appl. Surf. Sci. 684 (2025) 161815.
- [3] C. Abe, et al. Jpn. J. Appl. Phys. 63 (2024) 06SP10.